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Abstract

In this paper we study almost hypercomplex conformal submersions
with total space a locally conformally hyperkähler (lchK) manifold,
i.e. lchK τ -conformal submersions. We derive necessary and sufficient
conditions for the base space to be a hyperkähler manifold and we
study the harmonicity and stability of such maps.
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1 Introduction

The quaternionic analogues of complex Kähler manifolds are two well-known
manifolds, namely hyperkähler manifolds and quaternion Kähler manifolds,
which have as locally conformal correspondents the two classes: locally con-
formally hyperkähler manifolds and the larger class of locally conformally
quaternion Kähler manifolds. These classes are defined by requesting the
compatibility of some quaternion Hermitian or hyperhermitian structure
with a Weyl structure. As locally conformally Kähler structures naturally
appear in the classification of Hermitian structures according to the irre-
ducible representations of O(n), lchK and lcqK structures appear when
studying the representations of SP(n) and Sp(n) ·Sp(1), see e.g. [CS]. Since
1993, when these classes were considered in [PPS], a rather rich literature
on the subject appeared, see [OP], [OD], [Or] and the references therein.
∗Partially supported by CNCSIS - UEFISCSU, project PNII - IDEI code 8/2008, con-

tract no. 525/2009.
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The aim of this paper is to discuss conformal submersions satisfying an
appropriate condition of holomorphicity, from lchK manifolds. In the first
section, we give the necessary definitions and show that the base manifold, if
is hyperhermitian is forced to be lchK too. We study necessary and sufficient
conditions for the base space to be hyperkähler manifold.

The next section gives necessary and sufficient conditions for a lchK con-
formal submersion to be a harmonic map. When is harmonic, the stability
of such a map is also studied.

Throughout the paper, all manifolds and structures on them are dif-
ferentiable, of class C∞. We assume that all manifolds we work with are
connected.

2 Locally conformally hyperkähler τ-conformal
submersions

Let M be a 4m dimensional C∞ manifold. A triple J1, J2, J3 of global
integrable complex structures on M satisfying the quaternionic identities:
JαJβ = Jγ for (α, β, γ) = (1, 2, 3) and cyclic permutations, defines a hyper-
complex structure on M . If a Riemannian metric g is added, assumed to
be Hermitian with respect to J1, J2, J3, one gets a hyperhermitian manifold
(M, g, J1, J2, J3). If the global complex structures J1, J2, J3 on M are not
integrable we say that (M, g, J1, J2, J3) is an almost hyperhermitian mani-
fold.

More generally, by (M, g,H) we denote a quaternion Hermitian mani-
fold. Here H is a rank 3 subbundle of End(TM), locally spanned by (not
necessarily integrable) almost complex structures J1, J2, J3, again satisfying
the quaternionic identities and related on the intersections of trivializing
open sets by matrices of SO(3). H defines on M a structure of quaternionic
manifold and the local almost complex structures J1, J2, J3 are said to be
compatible with the quaternionic structure H. The additional datum of a
metric g, Hermitian with respect to the local compatible almost complex
structures, defines the quaternion Hermitian manifold (M, g,H).

Recall that the hyperhermitian or quaternion Hermitian metric g is said
to be hyperkähler or quaternion Kähler if its Levi-Civita connection ∇ sat-
isfies respectively ∇Jα = 0 (α = 1, 2, 3) or ∇H ⊂ H.

We shall always assume that the real dimension of our manifolds is at
least 8, as quaternion Hermitian geometry in dimension 4 is less interesting.
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We recall the definition of the two classes of manifolds that form the
subject of this paper:

Definition 2.1 ([OD])

(i) A hyperhermitian manifold (M, g, J1, J2, J3) is locally conformally hy-
perkähler (lchK) if, over open neighbourhoods Ui covering M , g|Ui =
efig′i with g′i quaternion Kähler on Ui.

(ii) A quaternion Hermitian manifold (M, g,H) is locally conformally
quaternion Kähler (lcqK) if, over open neighbourhoods Ui covering
M , g|Ui = efig′i with g′i quaternion Kähler on Ui.

In both cases, the Lee form ω, locally defined by ω|Ui = dfi, satisfies:

dΩ = ω ∧ Ω, dω = 0, (2.1)

where Ω =
∑

α=1,2,3 Ωα ∧Ωα is the (global) Kähler 4-form. Properties (2.1)
for Ω are also sufficient for a hyperhermitian or quaternion Hermitian metric
to be lchK or lcqK, respectively. We shall denote by B the Lee vector field
ω] g-metrically equivalent with ω..

Let now (M, g, J1, J2, J3) and (M ′, g′, J ′1, J
′
2, J
′
3) be almost hyperhermi-

tian compact manifolds.

Definition 2.2 A C∞ surjective mapping π : (M, g, J1, J2, J3) →
(M ′, g′, J ′1, J

′
2, J
′
3) is called an almost hypercomplex τ -conformal submer-

sion, where τ is a real differentiable function on M , if π is a submersion,
π∗ ◦ Jα = J ′α ◦ π∗ for α = 1, 2, 3 and for all x ∈M and for all X,Y ∈ TxM
orthogonal to the vertical space at x (i.e. orthogonal to Ker(dπx)),

g′(dπx(X), dπx(Y )) = eτ(x)g(X,Y ). (2.2)

If the total space (M, g, J1, J2, J3) is a lchK manifold, then π is called a lchK
τ -conformal submersion.

If τ = 0 then π is a Riemannian submersion and π is a lchK submersion.
Vectors which are in Ker(dπx) are tangent to the fiber over x and are

called vertical vectors at x. Vectors which are in (Ker(dπx))⊥ = H are said
to be horizontal. A vector field X on M is said to be vertical (respectively
horizontal) if Xx is vertical (respectively horizontal) for all x ∈ M . If X is
a vector field on M it may be written uniquely as a sum X = v(X) + h(X),
where v(X) is a vertical vector field, the projection of X on the vertical
space, and h(X) is a horizontal vector field, the projection of X on the
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horizontal space. A basic vector field is a horizontal vector field X which is
π-related to a vector field X ′ on M ′.

Proposition 2.3 [OP] Let (M, g, J1, J2, J3) be a compact lchK manifold.
Then

(∇XJα)Y =
1
2
{ω(JαY )X −ω(Y )JαX − g(X, JαY )B + g(X,Y )JαB} (2.3)

for α = 1, 2, 3 where X,Y are vector fields on M .

Proposition 2.4 If π : (M, g, J1, J2, J3) → (M ′, g′, J ′1, J
′
2, J
′
3) is lchK τ -

conformal submersion then the base space (M ′, g′, J ′1, J
′
2, J
′
3) is a lchK man-

ifold.
If B and B′ are the Lee vector fields of M and M ′, respectively, then

e−τ (2grad τ + h(B)) is the basic vector field associated to B′.

Proof From (2.1) it is enough to show that dΩ′ = ω′ ∧ Ω′ (note that, as
dimM ′ > 4, from this equation also follows dω′ = 0), and that J1, J2, J3 are
integrable.

For the lchK τ -conformal submersion π we have that [X ′, Y ′] =
dπ([X,Y ]) and J ′αX

′ = J ′αdπ(X) = dπ(JαX) for α = 1, 2, 3 where X,Y
are basic vector field on M which are π-related to the vector fields X ′, Y ′

on M ′. Also the horizontal and the vertical distributions determined by
π are Jα-invariant (see [Wa]). Therefore, since the Nijenhuis tensor fields
NJα = 0, we obtain that N ′J ′α = 0 for α = 1, 2, 3. By definition

Ω′ =
∑

α=1,2,3

Ω′α ∧ Ω′α =
∑

α=1,2,3

g′(·, J ′α·) ∧ g′(·, J ′α·) =
∑

α=1,2,3

eτΩα ∧ eτΩα

= e2τ (
∑

α=1,2,3

Ωα ∧ Ωα) = e2τΩ.

(2.4)

Then

dΩ′ = d(e2τΩ) = de2τ ∧ Ω + e2τdΩ

= 2e2τ (dτ) ∧ Ω + e2τ (ω ∧ Ω)

= 2dτ ∧ (e2τΩ) + ω ∧ (e2τΩ)
= (2dτ + ω) ∧ Ω′

= ω′ ∧ Ω′.

(2.5)
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We obtained dΩ′ = ω′ ∧ Ω′ where

ω′ = 2dτ + ω. (2.6)

Moreover, the Lee vector field B′ of M ′ is defined by

B′ = e−τdπ(2grad τ +B). (2.7)

Now, if C is the basic vector field associated to B′ then, using (2.6), we
have:

g′(B′, X ′) = ω′(X ′) = 2dτ(X) + ω(X) = g(2grad τ + h(B), X)
= e−τg′(dπ(2grad τ + h(B)), dπ(X))

and
g(C,X) = g(e−τ (2grad τ + h(B)), X),

for all basic vector field X on M . Therefore C = e−τ (2grad τ + h(B)).
2

We now obtain necessary and sufficient conditions for the base space of
a lchK τ -conformal submersion to be hyperkähler manifold.

Proposition 2.5 If π : (M, g, J1, J2, J3) → (M ′, g′, J ′1, J
′
2, J
′
3) is a lchK τ -

conformal submersion, then the following conditions are equivalent:

1. The vector field 2grad τ +B is vertical where B is the Lee vector field
of M .

2. If F is a fiber of submersion π then the mean curvature vector field of

F is µF =
1
2
h(grad τ )|F .

3. The lchK manifold M ′ is a hyperkähler manifold.

Proof Let F be a hypercomplex submanifold of M . It is known from [Vai]
that its mean curvature vector field is the normal component (with respect
to F ) Bn of the Lee vector field.

Let now F be a fiber of submersion π. Then the mean curvature vector
field µF of F is given by [MR]

µF = e−τ (µF − 1
2

(grad τ )n |F (2.8)

where µF is the mean curvature vector field of F with respect to the metric
g = eτg and (grad τ )n = h(grad τ ) is the normal component to F of grad τ .

5



But the submersion π defines a lchK submersion between manifold
(M, g, J1, J2, J3) and (M ′, g′, J ′1, J

′
2, J
′
3). Since this submersion is Rieman-

nian we obtain that µF = B
n = h(B) = h(e−τ (2grad τ + B) =

e−τ (2h(grad τ ) + h(B)).
We now prove the equivalence of (1) and (2). If the vector field 2grad τ +

B is vertical then µF = 0 and this implies (2). If (2) is true then from (2.8)
we obtain that µF = 0 and (1) follows by the definition of µ̄F .

Assuming (1), we now want to show that (∇′X′J ′α)Y ′ = 0 for α = 1, 2, 3
where X ′, Y ′ are vector fields on M ′. If 2grad τ + B is vertical, then
2h(grad τ ) + h(B) = 0. Then B′ = e−τdπ(2grad τ + B) = 0 and so
ω′ = 0. Hence, from (2.3) and Proposition 2.4 we obtain (3).

Conversely, if (3) is true then (∇′X′J ′α)Y ′ = 0 for α = 1, 2, 3 where X ′, Y ′

are vector fields on M ′. By a simple calculation with the definition we obtain
that

(∇′X′Ω′α)(Y ′, Z ′) = −g((∇′X′J ′α)Y ′, Z ′) (2.9)

From here and from ([KN], p.148) we have:

dΩ′α(X ′, Y ′, Z ′) =	X′,Y ′,Z′ (∇′X′Ω′α)(Y ′, Z ′)
= − 	X′,Y ′,Z′ g((∇′X′J ′α)Y ′, Z ′),

(2.10)

where 	 is the cyclic sum. Hence dΩ′α = 0 and so dΩ′ = 0. But dΩ′ = ω′∧Ω′

so that we derive ω′ = 0 and (1) follows.
2

Corollary 2.6 If π : (M, g, J1, J2, J3) → (M ′, g′, J ′1, J
′
2, J
′
3) is a lchK sub-

mersion, then the following conditions are equivalent:

1. The Lee vector field B of M is vertical.

2. The fibers of π are minimal submanifolds of M .

3. M ′ is a hyperkähler manifold.

It is known, see [OP], that the Lee form pf a compact lchk manifold is
parallel (the manifold thus having three nested Vaisman structures). On
the other hand, it is proven in [Ve] that the Lee form of a compact Vaisman
manifold restricts to any compact complex submanifold (the latter one being
Vaisman too). As, by holomorphicity, the fibers of the vertical distribution
are trivially complex submanifolds, we obtain:
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Corollary 2.7 If π : (M, g, J1, J2, J3) → (M ′, g′, J ′1, J
′
2, J
′
3) is a lchK τ -

conformal submersion with compact fibers from a compact lchk manifold,
then the mean curvature vector field of a fiber F is µF = 1

2h(grad τ )|F . So
M ′ is a hyperkähler manifold and 2grad τ +B is vertical.

3 Harmonic maps on locally conformally hy-
perkäler manifolds

The second fundamental form απ of a map π : (Mm, g)→ (M ′m
′
, g′) between

two Riemannian manifolds of dimensions m, respectively m′, is defined by
απ(X,Y ) = ∇πXπ∗Y − π∗∇XY , for any vector fields X,Y on M , where ∇ is
the Levi-Civita connection of M and ∇π is the pullback of the connection
∇′ of M ′ to the induced vector bundle π−1(TM ′), ∇πXπ∗Y = ∇′π∗Xπ∗Y .

The tension field τ(π) of π is defined as the trace of second fundamental
form of π:

τ(π)x =
m∑
i=1

απ(ei, ei), (3.1)

where {e1, . . . , em} is a local orthonormal frame of TxM , x ∈ M . We say
that π is a harmonic map if and only if τ(π) vanishes at each point x ∈M .

Let (Mm, g) be a compact Riemannian manifold and let π : (Mm, g)→
(M ′m

′
, g′) be a harmonic map. Let πs,t be a smooth variation, with parame-

ters s, t ∈ (−ε,−ε), and with π0,0 = π. The corresponding variational vector
fields are denoted by V and W .

The Hessian of a harmonic map π is defined by: Hessπ(V,W ) =
∂2

∂s∂t |(s,t)=(0,0)E(πs,t) where E(πs,t) = 1
2

∫
M |dπs,t|

2ϑg is the energy of π over
M .

From the second variation of the energy, the Hessian of π for any V and
W vector fields along π is given by ([BW], p. 91):

Hessπ(V,W ) =
∫
M
g′(Jπ(V ),W )ϑg

=
∫
M
g′(−trace(∇π)2V − traceRM ′(V, dπ)dπ,W )ϑg.

(3.2)

where Jπ, called the Jacobi operator, is acting on the space of variational
vector fields along π, Γ(π−1(TM ′)).

Let Jπ := ∆π − Rπ, where ∆π is the rough Laplacian operator defined
by

∆πV := −
m∑
i=1

(∇πei∇
π
ei −∇

π
∇eiei

)V, V ∈ Γ(π−1TM ′)). (3.3)
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By definition (see [BW], p. 92), a harmonic map defined on a compact man-
ifold is energy-stable if the Hessian for the energy is positive semi-definite,
i.e. Hessπ(V, V ) ≥ 0 for V ∈ Γ(π−1TM ′). Otherwise, it is called unstable.
One the other hand we can define this using the notion of index. The index
of a harmonic map π : (M, g)→ (M ′, g′) is defined as the dimension of the
largest subspace of Γ(π−1(TM ′)) on which the Hessian Hessπ is negative
definite. A harmonic map π is said to be stable if the index of π is zero and
otherwise, is said to be unstable.

We recall a result by Fuglede and Ishihara: A smooth map between
Riemannian manifolds is a harmonic morphism if and only if it is both
harmonic and horizontally weakly conformal (see [BW], p. 108, Theorem
4.2.2).

Recall now a property of the harmonic maps:

Theorem 3.1 ([BE]) Suppose that π : (Mm, g) → (M ′m
′
, g′) is a non-

constant horizontally weakly conformal map between Riemannian manifolds
with dimM ′ > 3. Then any two of the following assertions imply the third:

(i) π is a harmonic map (and so a harmonic morphism);

(ii) π is horizontally homothetic, i.e. the gradient of the dilation is vertical;

(iii) The fibers of π are minimal submanifolds of M .

Now we consider a lchK τ -conformal submersion and we find necessary
and sufficient conditions for it to be a harmonic map.

The following technical fact can be proven by direct computation:

Proposition 3.2 Let (M, g, J1, J2, J3) and (M ′, g′, J ′1, J
′
2, J
′
3) be two almost

hyperhermitian compact manifolds. If π : M → M ′ is a map such that
π∗ ◦ Jα = J ′α ◦ π∗ for α = 1, 2, 3, then we have

τ(π) = J ′α(tracegπ∗∇′J ′α)− π∗(JαdivJα) (3.4)

for all α = 1, 2, 3.

Theorem 3.3 Let π : (M, g, J1, J2, J3) → (M ′, g′, J ′1, J
′
2, J
′
3) be a lchK τ -

conformal submersion. Then π is a harmonic map if and only if the gradient
of the function τ is vertical. Moreover, if π is a harmonic map then π is a
horizontally homothetic harmonic morphism .
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Proof Let {e1, . . . , em, J1e1, . . . , J1em, J2e1, . . . , J2em, J3e1, . . . , J3em} be
an orthonormal basis of TxM , x ∈ M . Since M is a lchK manifold, cal-
culating each term of the formula (3.4) we obtain:

divJα = trace∇Jα =
m∑
i=1

{(∇eiJα)ei +
3∑

β=1

(∇JβeiJα)Jβei}

=
1
2

m∑
i=1

{ω(Jαei)ei − ω(ei)Jαei − g(ei, Jαei)B + g(ei, ei)JαB

+
3∑

β=1

[ω(JαJβei)Jβei − ω(Jβei)JαJβei

− g(Jβei, JαJβei)B + g(Jβei, Jβei)JαB]}

=
m∑
i=1

{ω(Jαei)ei − ω(ei)Jαei + JαB}

+
1
2

m∑
i=1

3∑
β=1,β 6=α

{ω(JαJβei)Jβei − ω(Jβei)JαJβei + JαB}

(3.5)

Similarly we find:

tracegπ
∗∇′J ′α =

m∑
i=1

{(∇′π∗eiJ
′
α)π∗ei +

3∑
β=1

(∇′J ′βπ∗eiJ
′
α)J ′βπ∗ei}

=
1
2

m∑
i=1

{ω′(J ′απ∗ei)π∗ei − ω′(π∗ei)J ′απ∗ei − g′(π∗ei, J ′απ∗ei)B′

+ g′(π∗ei, π∗ei)J ′αB
′ +

3∑
β=1

[ω′(J ′αJ
′
βπ∗ei)J

′
βπ∗ei

− ω′(J ′βπ∗ei)J ′αJ ′βπ∗ei − g′(J ′βπ∗ei, J ′αJ ′βπ∗ei)B′

+ g′(J ′βπ∗ei, J
′
βπ∗ei)J

′
αB
′]}

=
m∑
i=1

{ω′(π∗Jαei)π∗ei − ω′(π∗ei)π∗Jαei + g′(π∗ei, π∗ei)J ′αB
′}

+
1
2

m∑
i=1

3∑
β=1,β 6=α

{ω′(π∗JαJβei)π∗Jβei − ω′(π∗Jβei)π∗JαJβei

+ g′(π∗ei, π∗ei)J ′αB
′}

(3.6)
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We derive:

tracegπ
∗∇′J ′α = π∗(divJα) + 2(2m− 1)π∗(Jαgrad τ ),

which implies τ(π) = 2(1− 2m)π∗(grad τ ).
Now, from the definition of a lchK τ -conformal submersion we deduce

that π is a horizontally conformal submersion (in the terminology of [BW]).
From the result of Fuglede and Ishihara, if π is a harmonic map, then π is
a harmonic morphism and since the gradient of τ is vertical we find that π
is horizontally homothetic.

2

Combining Proposition 2.5, Theorem 3.1 and Theorem 3.3, we also obtain:

Proposition 3.4 If π : (M, g, J1, J2, J3) → (M ′, g′, J ′1, J
′
2, J
′
3) is a lchK τ -

conformal submersion then π is a harmonic map if and only if the Lee vector
field B of M is vertical and the lchK manifold M ′ is a hyperkähler manifold.

Corollary 3.5 If π : (M, g, J1, J2, J3) → (M ′, g′, J ′1, J
′
2, J
′
3) is a lchK sub-

mersion then π is a harmonic map, the Lee vector field B of M is vertical
and the lchK manifold M ′ is a hyperkähler manifold.

As regards the stability, we have the following result:

Theorem 3.6 Let π : (M, g, J1, J2, J3) → (M ′, g′, J ′1, J
′
2, J
′
3) be a lchK τ -

conformal submersion between compact locally conformally hyperkähler man-
ifolds. If the gradient of the function τ is vertical then π is a stable map.

Proof From Theorem 3.3, π is a harmonic map. From Proposition 3.4, we
know that the lchK manifold M ′ is a hyperkähler manifold. It then follows
that M ′ is Ricci flat ([Bs], p.398).

Since π is a lchK τ -conformal submersion we obtain that
g′(traceRM

′
(V, dπ)dπ, V ) = eτRicciM

′
(V, V ) where RicciM

′
is the Ricci cur-

vature of M ′ and V ∈ Γ(π−1(TM ′)).
From (3.2) then obtain:

Hessπ(V, V ) =
∫
M
g′(−trace(∇π)2V − traceRM ′(V, dπ)dπ, V )ϑg

=
∫
M
g′(∇πV,∇πV )ϑg.

(3.7)

for any V ∈ Γ(π−1(TM ′)) .
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This implies that Hessπ(V, V ) ≥ 0, ∀V ∈ Γ(π−1(TM ′)) and hence π is
a stable harmonic map.
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